Magdalena Rodriguez (Universidad de Granada, Spain)

The half-space theorem for constant mean curvature surfaces in $\mathbb{H}^2\times\mathbb{R}$

Abstract: The theory of constant mean curvature H > 0 surfaces (*H*-surfaces) in $\mathbb{H}^2 \times \mathbb{R}$ became very active after the seminal work by Abresch and Rosenberg where they described a Hopf-type holomorphic quadratic differential on any such surface and classified the rotational *H*-spheres. The critical value for the mean curvature in $\mathbb{H}^2 \times \mathbb{R}$ is $\frac{1}{2}$ in the sense that there exist compact *H*-surfaces only when $H > \frac{1}{2}$ and complete *H*-graphs if $H \leq \frac{1}{2}$. In this talk we will prove that a properly embedded *H*-surface in $\mathbb{H}^2 \times \mathbb{R}$ with $0 < H \leq \frac{1}{2}$ and an annular end cannot be contained in a horizontal slab and that the only examples with finite topology contained in $\mathbb{H}^2 \times [0, +\infty)$ are graphs. This is a joint work with Laurent Hauswirth and Ana Menezes.